Soal :
Selesaikan
linier program ini dengan metode simpleks
Maksimum
Z= 2X1 + 3X2 + X3
Dengan
fungsi kendala
X1
+ X2 + X3≤ 9
2X1
+ 3X2 ≤ 25
2X2
+ 2X3 ≤ 10
Jawab:
Z=
2X1 + 3X2 + X3 + 0S1 + 0S2
+ 0S3
OF
X1
+ X2 + X3 + 1S1 + 0S2 + 0S3=
9
2X1
+ 3X2 + 0S1 + 1S2 + 0S3 = 25
2X2
+ 2X3 + 0S1 + 0S2 + 1S3
=10
VD
|
X1
|
X2
|
X3
|
S1
|
S2
|
S3
|
NK
|
INDEKS
|
|
Z
|
-2
|
-3
|
-1
|
0
|
0
|
0
|
0
|
0
|
+3/2.B4
|
S1
|
1
|
1
|
1
|
1
|
0
|
0
|
9
|
9
|
-1/2.B4
|
S2
|
2
|
3
|
0
|
0
|
1
|
0
|
25
|
8,3
|
-3/2.B4
|
S3
|
0
|
2
|
2
|
0
|
0
|
1
|
10
|
5
|
`x1/2
|
VD
|
X1
|
X2
|
X3
|
S1
|
S2
|
S3
|
NK
|
INDEKS
|
|
Z
|
-2
|
0
|
2
|
0
|
0
|
3/2
|
15
|
-7,5
|
|
S1
|
1
|
0
|
0
|
1
|
0
|
-1/2
|
4
|
4
|
|
S2
|
2
|
0
|
-3
|
0
|
1
|
-3/2
|
10
|
5
|
|
X2
|
0
|
1
|
1
|
0
|
0
|
1/2
|
5
|
0
|
Menukar elemen pada
baris
VD
|
X1
|
X2
|
X3
|
S1
|
S2
|
S3
|
NK
|
INDEKS
|
|
Z
|
-2
|
0
|
2
|
0
|
0
|
3/2
|
15
|
-7,5
|
+2.b4
|
S1
|
0
|
0
|
1
|
1
|
0
|
-1/2
|
4
|
4
|
Xb4
|
S2
|
2
|
0
|
-3
|
0
|
1
|
-3/2
|
10
|
5
|
-2b4
|
X2
|
1
|
0
|
0
|
0
|
1/2
|
5
|
0
|
X1
|
VD
|
X1
|
X2
|
X3
|
S1
|
S2
|
S3
|
NK
|
Z
|
0
|
0
|
2
|
0
|
0
|
5/2
|
25
|
S1
|
0
|
0
|
0
|
0
|
0
|
-1/4
|
20
|
S2
|
0
|
0
|
-3
|
0
|
1
|
-5/2
|
0
|
X2
|
1
|
0
|
0
|
0
|
0
|
1/2
|
5
|
0 comments:
Post a Comment